

Welcome to Burner Wallet’s documentation!

Developer Documentation:

	Getting started
	Setting Infura key

	Add a custom token

	Local developer wallet

	Wallet Architecture
	Burner Core

	Burner Wallet UI

	Plugins

	Plugin Development Guide
	What can a Burner Wallet Plugin do?

	Sample Plugins

	Getting Started

	Create plugin entry point

	Adding a page

	Interacting with a contract

	API Reference
	Plugin Class

	Plugin Context

	Plugin Component Props

	Actions

	Burner Components: UI Components

	Burner Components: Data Providers

	Packages
	Main Packages

	Core Packages

	Standard Plugins

	Theming

Getting started

Simple, customized wallet

Do you want to customize your own version of the wallet? Check out the simple application in the basic-wallet directory.

Alternatively, visit https://burnerfactory.com to create your own wallet without writing any code!

Setting Infura key

By default, basic-wallet uses the InfuraGateway for connecting to commonly used Ethereum chains.

The entry point takes an Infura key from the REACT_APP_INFURA_KEY environment variable. For your wallet to
function correctly, you must create a file named .env in the basic-wallet folder with the following value:

REACT_APP_INFURA_KEY=<your infura key>

You can generate an Infura key at https://infura.io/

Add a custom token

You can add any ERC20 token to your wallet by constructing a new ERC20Asset and adding it to the asset list.

The id parameter is the internal ID used by the wallet, while the name parameter is the display name
that will be displayed to the user. network is the chain ID of the chain the token is deployed to
(‘1’ for mainnet, ‘100’ xDai, etc). address is the address where the token contract is deployed.

import { xdai, dai, eth, ERC20Asset } from '@burner-wallet/assets';

const bos = new ERC20Asset({
 id: 'bos',
 name: 'Boston Token',
 network: '100',
 address: '0x52ad726d80dbb4A9D4430d03657467B99843406b',
});

const core = new BurnerCore({
 assets: [bos, xdai, dai, eth],
});

Local developer wallet

Are you a developer, hoping to test changes to other modules in this project (modern-ui, ui-core or various plugins)?

Run yarn start-local in the project root. This will start a wallet on localhost:3000 that is connected to your local
Ganache instance (connecting to node http://localhost:8545 by default).

Before the wallet server launches, a script create a pre-filled account. This account will hold 1 Ganache ETH and 100
test tokens.

Note that Metamask will override the local account, disable it or open in incognito mode for local development.

Wallet Architecture

A Burner Wallet is created by composing a number of independent modules into a single web
application.

The following will outline the various modules from the lowest-level up to the higest level.

Burner Core

The foundation of a Burner Wallet is the Burner Core modules. These modules are UI-agnostic and only
handle blockchain calls.

BurnerCore

The BurnerCore class (from the @burner-wallet/core package) routes all blockchain communications
between various modules. Burner Wallets are inheritly multi-chain applications, so this module must
route messages and transactions to the correct chain.

The BurnerCore class is also responsible for storing a log of historical on-chain events.

Gateways

Gateways can be thought of as “wrapped RPC providers”, as they transmit data from the wallet to
endpoints such as Infura.

The @burner-wallet/core module contains some standard gateways: InfuraGateway, XDaiGateway and
InjectedGateway (which transmits messages through an injected Web3 provider such as Metamask).

Theoretically, a gateway could also be used to connect to non-standard networks, such as a state
channel or centralized service.

Signers

Signers maintain the “accounts” available to the wallet, and are responsible for cryptographically
signing transactions and messages.

The @burner-wallet/core module contains two standard signers: LocalSigner (which stores private
keys in the browser’s LocalStorage) and InjectedSigner (which uses the account from an injected Web3
provider such as Metamask).

Signers can also provide more advanced functionality, such as the FortmaticSigner which uses the
Fortmatic service for signing, or the ContractWalletSigner, which generates counterfactual contract
wallets from other available accounts.

Assets

A standard interface is used for defining all fungible digital assets that are handled by the
wallet. Assets are responsible for sending assets, checking account balances and watching for
incoming transactions.

In addition to defining the abstract Asset class, the @burner-wallet/assets package contains
standard assets eth, dai, and xdai. Developers can easily define their own assets using the
classes NativeAsset (for assets such as ETH, xDai, testnet ETH) as well as ERC20Asset and
ERC777Asset for tokens.

Burner Wallet UI

The Burner Wallet interface is defined using React Components.

UI Core

Note: developers only need to farmiliarize themselves with the UI Core module if they want to
completely change the wallet interface. Most developers only need to use the Modern UI package.

The UI Core module is the root module of the Burner application. This module handles all URL routing,
all plugins, and routes data between the Burner Core instance and React components.

While the UI Core consists of a set of React components, it is design agnotstic.

UI Implementations (ModernUI)

Visual components are defined in a separate module. The ModernUI (@burner-wallet/modern-ui)
module should be sufficent for most applications, however developers may also use the ClassicUI
module (which resembes the original Austin Griffith Burner Wallet) or create their own UI
implementation.

Plugins

Wallet functionality can be extended by defining plugins, which are Javascript packages that conform
to the Burner Wallet Package API.

At a simple level, plugins can access Web3 instances and insert React components into the wallet
interface. This allows plugins to provide any functionality that is possible in a standalone dapp.

Plugins also have the ability to extend other parts of the wallet, such as using the QR code
scanner, or providing human-readable names for addresses.

For more information, see the Plugin API section.

Exchange Plugin

The “burner-wallet-2” repository contains a number of offically-supported plugins, such as the
ENS Plugin or Recent Accounts Plugin. However, the Exchange Plugin plays an important role, as it
allows uses to convert between different asset types.

The Exchange Plugin itself is extendable by providing it a set of “Exchange Pairs”, which define
mechanisms for converting from one asset to another. Two Exchange Pair classes are provided by
default: the Uniswap pair which allows converstion between any asset supported by Uniswap, and the
xDai Bridge which facilitates transfers between Dai and xDai.

Plugin Development Guide

The Burner Wallet 2 is a robust, extendable implementation of Austin
Griffith’s famous Burner Wallet. A simple wallet can be built and
customized in only a single Javascript file. The wallet can be extended
using Plugins, which require only basic knowledge of React and the Web3
library.

For assistance with plugin development, feel free to contact me, David
Mihal (@dmihal on Telegram and Twitter)

What can a Burner Wallet Plugin do?

A Burner Wallet plugin can do anything that any other DApp can do! At a basic level, Burner Wallet
plugins are provided with a Web3 instance and the ability to insert React components into the wallet
interface.

Sample Plugins

There are many plugins that can be viewed for reference:

	The Burner Wallet 2 [https://github.com/dmihal/burner-wallet-2/tree/master/packages] repo contains a number of general-purpose
plugins, such as the exchange [https://github.com/dmihal/burner-wallet-2/tree/master/packages/exchange], ENS plugin [https://github.com/dmihal/burner-wallet-2/tree/master/packages/ens-plugin], and recent accounts
plugin [https://github.com/dmihal/burner-wallet-2/tree/master/packages/recent-accounts-plugin].

	The Burner Factory Plugins [https://github.com/dmihal/burner-factory-plugins] repo contains some more advanced
plugins such as the collectables plugin [https://github.com/dmihal/burner-factory-plugins/tree/master/plugins/collectable-plugin] and push notification
plugin [https://github.com/dmihal/burner-factory-plugins/tree/master/plugins/push-notification-plugin].

Getting Started

Option 1: Clone the sample project

The easiest way to get started is to start from the sample plugin
repository:

Zip file:
https://github.com/burner-wallet/sample-plugin/archive/master.zip

Fork the repo: https://github.com/burner-wallet/sample-plugin

	Download the Zip file or fork the repo.

	cd into the project directory, and run yarn install

	In order to use your app on Mainnet or testnets, you’ll need an Infura API key. See the “envionment variables” section

	Start your wallet! Run yarn start-local to run a wallet that connects to a local Ganache
instance, or run yarn start-basic to run a wallet that connects to the Mainnet and xDai chains.

	Navigate your browser to http://localhost:3000!

Option 2: Start from scratch

Creating a wallet with the Burner Wallet 2 does not require cloning any repository, as all
components are NPM packages. Simply create a new react project, install the packages, and create a
plugin entry point.

	Run create-react-app my-wallet and cd to my-wallet

	Run yarn add @burner-wallet/core @burner-wallet/assets @burner-wallet/modern-ui @burner-wallet/types

	Paste the following code in index.tsx to create a simple wallet:

	Add an Infura key (see Option 1)

	Start your wallet! Run yarn start-local to run a wallet that connects
to a local Ganache instance, or run yarn start-basic to run a wallet
that connects to the Mainnet

	Navigate your browser to http://localhost:3000!

Environment Variables

Typescript Support

The Burner Wallet 2 is natively built with Typescript, but you can write
your plugins in TypeScript or plain Javascript.

If you would like to write a plugin using Typescript, the only
dependency you need is @burner-wallet/types, which includes all the
typings you’ll need.

If you want to write in plain javascript, then you don’t need any
dependencies!

Create plugin entry point

If you have started from the sample project, you may skip this section.

Plugins are created by defining a class that implements the following Plugin interface.

export interface Plugin {
 initializePlugin(context: BurnerPluginContext): void;
}

Create a new file with the following content:

import { Plugin, BurnerPluginContext } from '@burner-wallet/types'

export default class MyPlugin implements Plugin {
 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.addElement('home-top', () => "Hello, World");
 }
}

Import your class in your wallet entry point, and add it to the “plugins” array.

import MyPlugin from "../my-plugin/MyPlugin";

const BurnerWallet = () =>
 <BurnerUI
 core={core}
 plugins={[new MyPlugin()]}
 />

Now, start your wallet development server by running yarn start

Navigate to http://localhost:3000. You should see a normal wallet with “Hello, World” written
at the top!

Adding a page

Note: this step is completed by default in the sample project:

Create a new file with the following content:

import React from 'react';
import { PluginPageContext, Asset } from '@burner-wallet/types';

const MyPage: React.FC<PluginPageContext> = ({ BurnerComponents, assets, defaultAccount }) => {
 const { Page } = BurnerComponents;
 return (
 <Page title="My Page">
 <div>Account: {defaultAccount}</div>
 <div>Assets: {assets.map((asset: Asset) => asset.name).join(', ')}</div>
 </Page>
);
};

export default MyPage;

Now import and add that page to the entry-point class:

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';

export default class MyPlugin implements Plugin {
 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.addPage('/mypage', MyPage);
 }
}

We also want to add a button to the home page so that users can access the page:

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';

export default class MyPlugin implements Plugin {
 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.addPage('/mypage', MyPage);
 pluginContext.addButton('apps', 'My Page', '/mypage');
 }
}

Interacting with a contract

This section will allow our plugin to interact with a smart contract using Web3.

First, we need to save the pluginContext to an instance variable so that it can be accessed
outside of the initializePlugin function.

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';

export default class MyPlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;

 pluginContext.addPage('/mypage', MyPage);
 ...
 }
}

Now, let’s import our contract ABI from a JSON file and add a getContract function:

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';
import gameAbi from './game-abi.json';

const GAME_CONTRACT_ADDRESS = '0x0123456789012345678901234567890123456789';

export default class MyPlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;

 pluginContext.addPage('/mypage', MyPage);
 ...
 }

 getContract() {
 const web3 = this.pluginContext!.getWeb3('100' /* xDai */);
 return new web3.eth.Contract(gameAbi as any, GAME_CONTRACT_ADDRESS);
 }
}

Note the exclamation point after this.pluginContext. Technically, it’s possible that
pluginContext is undefined, however we can assume that no code will run until after
initializePlugin has been called.

In that example, we have hardcoded the contract address and network ID. If you want the plugin to be
more flexible and reusable, you can also make those constructor arguments like this:

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';
import gameAbi from './game-abi.json';

const GAME_CONTRACT_ADDRESS = '0x0123456789012345678901234567890123456789';

export default class MyPlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;
 private contractAddress: string;
 private chainId: string;

 constructor(contractAddress: string, chainId: string) {
 this.contractAddress = contractAddress;
 this.chainId = chainId;
 }

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;

 pluginContext.addPage('/mypage', MyPage);
 ...
 }

 getContract() {
 const web3 = this.pluginContext!.getWeb3(this.chainId);
 return new web3.eth.Contract(gameAbi as any, this.contractAddress);
 }
}

Now, let’s add a some contract calls.

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import MyPage from './MyPage';
import gameAbi from './game-abi.json';

const GAME_CONTRACT_ADDRESS = '0x0123456789012345678901234567890123456789';

export default class MyPlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;
 private contractAddress: string;
 private chainId: string;

 constructor(contractAddress: string, chainId: string) {
 this.contractAddress = contractAddress;
 this.chainId = chainId;
 }

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;

 pluginContext.addPage('/mypage', MyPage);
 ...
 }

 getContract() {
 const web3 = this.pluginContext!.getWeb3(this.chainId);
 return new web3.eth.Contract(gameAbi as any, this.contractAddress);
 }

 async getScore(address: string) {
 const contract = this.getContract();
 const score = await contract.methods.getScore(address).call();
 return score;
 }

 async buyTokens(address: string, numTokens: string) {
 const contract = this.getContract();
 await contract.methods.buyTokens(numTokens).send({ from: address });
 }
}

Our plugin can now fetch data by calling getScore on this contract, as well as send a
transaction to the contract’s buyTokens function.

Now, we can integrate these functions into our page:

import React, { useState, useEffect } from 'react';
import { PluginPageContext } from '@burner-wallet/types';
import MyPlugin from './MyPlugin';

const MyPage: React.FC<PluginPageContext> = ({ BurnerComponents, defaultAccount }) => {
 const [score, setScore] = useState('');
 const [numTokens, setNumTokens] = useState('0');

 const _plugin = plugin as MyPlugin;

 useEffect(() => {
 _plugin.getScore(defaultAccount).then(score => setScore(score));
 }, []);

 const buyTokens = async () => {
 await _plugin.buyTokens(defaultAccount, numTokens);
 setNumTokens('0');

 const score = await _plugin.getScore(defaultAccount);
 setScore(score);
 };

 const { Page, Button } = BurnerComponents;
 return (
 <Page title="My Page">
 <div>Score: {score}</div>
 <div>
 <input type="number" value={numTokens} onChange={e => setNumTokens(e.target.value)} />
 <Button onClick={buyTokens}>Buy Tokens</Button>
 </div>
 </Page>
);
};

Users can now interact with the deployed contract!

API Reference

Plugin Class

All plugins are defined by creating a simple class that implements the following initializePlugin
method:

interface Plugin {
 initializePlugin(context: BurnerPluginContext): void;
}

Inside this method, plugins declare all wallet integrations using the Plugin Context API.

The Plugin Class is also an ideal location to define blockchain logic, since React components will
have access to the plugin instance.

import { Plugin, BurnerPluginContext } from '@burner-wallet/types'
import Game from './ui/Game';
import gameAbi from './gameAbi.json';

const GAME_ADDRESS = '0x0123456789012345678901234567890123456789';

export default class GamePlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;

 pluginContext.addPage('/game', Game);
 pluginContext.addButton('apps', '/game', {
 'description': 'Play this fun game!',
 });
 }

 getContract() {
 const web3 = this.pluginContext!.getWeb3('1');
 const contract = new web3.eth.Contract(gameAbi, GAME_ADDRESS);
 return contract;
 }

 async getScore(userAddress) {
 const contract = this.getContract();
 const score = await contract.methods.getScore(userAddress).call();
 return score;
 }
}

Plugin Context

When the wallet is loaded, the wallet will call the initializePlugin(pluginContext) function for
each plugin. This function is provided an object with the following interface:

interface BurnerPluginContext {
 addElement: (position: string, Component: PluginElement, options?: any) => void;
 addButton: (position: string, title: string, path: string, options?: any) => any;
 addPage: (path: string, Component: PluginPage) => any;
 getAssets: () => Asset[];
 getWeb3: (network: string, options?: any) => Web3;
 addAddressToNameResolver: (callback: AddressToNameResolver) => void;
 onAccountSearch: (callback: AccountSearchFn) => void;
 onQRScanned: (callback: QRScannedFn) => void;
 onSent: (callback: TXSentFn) => void;
}

addElement

pluginContext.addElement(position: string, Component: React.ComponentType, [options?: any])

Adds a React component to a defined position in an existing wallet page.

Paramaters

	position: The defined position in the application to insert the component at. The ModernUI defines the following positions:

	home-top

	home-middle

	home-bottom

	home-tab: Adds component as a tab on the home page. Accepts an option with the value title

	advanced

	Component: The React component to be used. The component will receive the Burner Plugin Component Props

	options: Some positions may expect additional options to be provided

Example

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';
import BalanceTab from './Username';
import BalanceTab from './BalanceTab';

export default class BalancePlugin implements Plugin {
 initializePlugin(context: BurnerPluginContext) {
 context.addElement('home-middle', Username);
 context.addElement('home-tab', BalanceTab, { title: 'Cash' });
 }
}

addPage

pluginContext.addPage(path: string, Component: React.ComponentType)

Creates a new page in the wallet with it’s own URL route.

addButton

pluginContext.addButton(position: string, title: string, path: string, [options?: any])

Add a button do a pre-defined location in the wallet.

Paramaters

	position: A button position defined by the Wallet UI. Currently, ModernUI only supports “app”, while ClassicUI only supports “home”

	title: The text to display in the button

	path: The URL path to navigate to when clicked

	options: Additional data to provide the button. For example, ModernUI accepts description and icon values.

Example

import { Plugin, BurnerPluginContext } from '@burner-wallet/types';

export default class MenuPlugin implements Plugin {
 initializePlugin(context: BurnerPluginContext) {
 pluginContext.addButton('apps', 'Drink Menu', '/menu', {
 description: 'Order drinks from the bar',
 icon: '/beericon.png',
 });
 }
}

getAssets

pluginContext.getAssets(): Asset[]

Returns an array of all Asset objects used by the wallet.

getWeb3

pluginContext.getWeb3(chain: string): Web3

Returns a Web3 instance for the requested chain. This allows lower-level blockchain calls (querying
transactions & blocks) as well as constructing Web3 Contract instances.

Note: Burner Wallet uses Web3 v1.2.x

Paramaters

	chain: The chain ID for the requested chain (ex: ‘1’ for mainnet, ‘42’ for Kovan testnet, ‘100’ for xDai)

Example

import { Plugin, BurnerPluginContext } from '@burner-wallet/types'

const GAME_ADDRESS = '0x0123456789012345678901234567890123456789';

export default class GamePlugin implements Plugin {
 private pluginContext?: BurnerPluginContext;
 import gameAbi from './gameAbi.json';

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;
 }

 async getBlockNumber() {
 const web3 = this.pluginContext!.getWeb3('1');
 return await web3.eth.getBlockNumber();
 }

 getContract() {
 const web3 = this.pluginContext!.getWeb3('1');
 const contract = new web3.eth.Contract(gameAbi, GAME_ADDRESS);
 return contract;
 }

 async getScore(userAddress) {
 const contract = this.getContract();
 const score = await contract.methods.getScore(userAddress).call();
 return score;
 }
}

addAddressToNameResolver

type AddressToNameResolver = (address: string) => Promise<string | null>;

pluginContext.addAddressToNameResolver(callback: AddressToNameResolver);

This API allows plugins to provide human-readable names for addresses displayed in the wallet UI.
For example, the ENS plugin uses this to replace addresses with ENS names.

Paramaters

	callback: A function that can resolve addresses to human readable names. Callbacks are

passed an Ethereum address as a paramater, and should return a string or null if the address
can not be resolved.

Example

import { BurnerPluginContext, Plugin, Account } from '@burner-wallet/types';

export default class ENSPlugin implements Plugin {

 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.addAddressToNameResolver(async (address: string) => {
 const name = await ens.reverseLookup(address);
 return name;
 });
 }
}

onAccountSearch

type AccountSearchFn = (query: string) => Promise<Account[]>;

pluginContext.onAccountSearch(callback: AccountSearchFn)

This API allows plugins to suggest accounts to user when they are typing in the “address” field for
a new transaction. For example, the ENS Plugin uses this API to resolve ENS names, while the Recent
Accounts Plugin uses this API to suggest accounts that the user has recently interacted with.

Paramaters

	callback: A function that will receive a search query as a paramater, and should return an array of “Account” objects (or an empty array). “Accounts” are objects that contain an “address” and “name” property.

Example

import { BurnerPluginContext, Plugin } from '@burner-wallet/types';

export default class ENSPlugin implements Plugin {

 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.onAccountSearch(async (search: string) => {
 if (search.length < 3) {
 return [];
 }
 const address = await ens.getAddress(search);
 return address ? [{ address: address, name: search }] : [];
 });
 }
}

onQRScanned

type QRScannedFn = (qr: string, context: { actions: Actions }) => boolean | undefined;

pluginContext.onQRScanned(callback: QRScannedFn)

Provide a function to be called when the user scans a QR code using the default QR code scanner. The
function is passed the text of the QR code and the “actions” object (see below).

For example, the ERC681 plugin uses this API to handle QR codes that contain the ERC681 URI format
(ethereum:0xf01acd...`).

Note: URLs of the same domain as the wallet are automatically handled. For example, if a wallet is
hosted at mywallet.com and the user scans a QR code for https://mywallet.com/mypage, then
the wallet will automatically route to /mypage.

Paramaters

	
	callback: A function that parses the scanned QR code string and can chose to take action. This function must return true if it choses to handle this QR code, or else the wallet will continue to pass the value to other plugins. The function receives the following paramaters

	
	qr: The string value of the scanned QR code

	context: This object currently only contains a single paramater, actions. However, more values may be added in the future.

Example

import { BurnerPluginContext, Plugin } from '@burner-wallet/types';

export default class ERC681Plugin implements Plugin {
 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.onQRScanned((qr: string, ctx: any) => {
 if (qr.indexOf('ethereum:') === 0) {
 const parsed = parse(qr);

 if (parsed === null) {
 return false;
 }

 ctx.actions.send({
 to: parsed.recipient,
 value: parsed.value,
 asset: parsed.asset,
 });

 return true;
 }
 return false;
 });
 }
}

onSent

type TXSentFn = (data: SendData) => string | void | null;

pluginContext.onSent(callback: TXSentFn);

Provide a function to be called when the user sends an asset through the normal send mechanism.
Callback will receive an object with the asset, sender and recipient address, amount, message, Web3
receipt, transaction hash, and an ID if specified in the send function.

Typically, a user will be redirected to the Receipt page after a transaction has been sent. However,
plugins can override this behavior by returning a path string from the onSent callback.

Example

import { BurnerPluginContext, Plugin, SendData } from '@burner-wallet/types';
import OrderCompletePage from './OrderCompletePage';

export default class ShoppingPlugin implements Plugin {
 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.addPage('/order-complete/:id', OrderCompletePage);

 pluginContext.onSent((tx: SendData) => {
 if (tx.id.indexOf('order:') === 0) {
 return `/order-complete/${tx.id.substr(6)}`;
 }
 });
 }
}

sendPluginMessage

actions.sendPluginMessage(topic: string, ...message: any[]): any

Send cross-plugin messages

Paramaters

	topic: Topic ID that other plugins are listening for

	All other arguments will be included

Example

import { BurnerPluginContext, Plugin, SendData } from '@burner-wallet/types';

export class NamePlugin implements Plugin {
 private pluginContext: BurnerPluginContext;

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;
 }

 changeName(newName: string) {
 this.pluginContext!.sendPluginMessage('name-changed', newName);
 }
}

export class OtherPlugin implements Plugin {
 private pluginContext: BurnerPluginContext;

 initializePlugin(pluginContext: BurnerPluginContext) {
 pluginContext.onPluginMessage('name-changed', (newName) => console.log('new name', newName));
 }
}

onPluginMessage

type PluginMessageListener = (...message: any[]) => any;

actions.onPluginMessage(topic: string, listener: PluginMessageListener)

Paramaters

	topic: Topic ID to listen for

	listener: A callback that will be passed all arguments from the message sender

Example

See example for sendPluginMessage

Plugin Component Props

Pages (added with pluginContext.addPage) and elements (added with pluginContext.addElement)
will receive the following props.

plugin

Pages and Elements are provided with the instance of the Plugin that added them. This allows React
components to access values from the plugin constructor, Web3 instances, and more.

Example

import { BurnerPluginContext, Plugin } from '@burner-wallet/types';

export default class MyPlugin implements Plugin {
 public id: string;
 private pluginContext?: BurnerPluginContext;

 constructor(id: string) {
 this.id = id;
 }

 initializePlugin(pluginContext: BurnerPluginContext) {
 this.pluginContext = pluginContext;
 pluginContext.addPage('/myPage', MyPage);
 }

 async send(account: string) {
 const web3 = this.pluginContext!.getWeb3('100');
 const contract = new web3.eth.Contract(abi, address);
 await contract.methods.myMethod().send({ from: account });
 }
}

const MyPage: React.FC<> = ({ plugin, defaultAccount }) => {
 const _plugin = plugin as MyPlugin;
 return (
 <div>
 <h1>ID: {_plugin.id}</h1>
 <button onClick={() => _plugin.send()}>Send Tx</button>
 </div>
);
};

assets

Array[]

An array of Asset objects.

defaultAccount

string

The Ethereum address of the default account (equivelent to accounts[0]).

accounts

string[]

An array of addresses representing all available accounts.

actions

Object containing a number of functions. See Actions section.

BurnerComponents

An object containing a number of React components that can be used. See the Burner Components section.

React Router props

Page components (added with addPage) will also receive the match [https://reacttraining.com/react-router/web/api/match], location [https://reacttraining.com/react-router/web/api/location] and history [https://reacttraining.com/react-router/web/api/history] props
from React Router.

Typescript users may define expected paramaters by passing a type argument to PluginPageContext.

Example

import { PluginPageContext } from '@burner-wallet/types';

interface MatchParams {
 level: string;
}

const Game: React.FC<PluginPageContext<MatchParams>> = ({ match }) => {
 return (
 <div>Welcome to level {match.params.level}</div>
);
};

Actions

callSigner

actions.callSigner(action: string, target: string, ...props: any[]): string

Calls a method defined by the signer.

Paramaters

	action: The method to call. LocalSigner supports the methods “readKey”, “writeKey”, “burn”, while InjectedSigner supports “enable”.

	target: Either the address to call an action on (0x9f31ca...) or the ID of a signer (local, injected).

	props: Additional arguments, dependent on the actions.

Example

const PrivateKeyChanger = ({ actions, defaultAccount }) => {
 const [newKey, setNewKey] = useState('');
 const canChangeKey = actions.canCallSigner('writeKey', defaultAccount);

 return (
 <div>
 {canChangeKey ? (
 <div>
 <input value={newKey} onChange={e => setNewKey(e.target.value)} />
 <button onClick={() => actions.callSigner('writeKey', defaultAccount, newKey)}>
 Change Key
 </button>
 <div>
) : "Can not update private key"}
 </div>
);
};

canCallSigner

actions.canCallSigner(action: string, target: string, ...props: any[]): boolean

Paramaters

	action: The method to call. LocalSigner supports the methods “readKey”, “writeKey”, “burn”, while InjectedSigner supports “enable”.

	target: Either the address to call an action on (0x9f31ca...) or the ID of a signer (local, injected).

	props: Additional arguments, dependent on the actions.

Example

See example for callSigner

openDefaultQRScanner

actions.openDefaultQRScanner(): Promise

Open the full-screen QR code scanner. If a QR code is scanned, it will be handled with the default
logic.

The default logic is as follows:

	Plugins may handle QR codes by returning true from their onQRScanned callback.

2. If an address was scanned, the user will be redirected to the send page
2. If a private key was scanned, it will be handled with safeSetPK
2. URLs that contain the same domain as the wallet will be automatically routed

scanQRCode

actions.scanQRCode: () => Promise<string>

Opens the full-screen QR code scanner. Unlike openDefaultQRScanner, there is no default logic
for handling the scanned QR code. The promise will resolve once a QR code is scanned, or will reject
if the user cancels.

safeSetPK

actions.safeSetPK(newPK: string)

Attempts to update the user’s private key, without losing any funds.

	If there is no balance in the existing account, the new private key will be automatically updated

	If the current account has funds, the user will be prompted with the following options:

	Move all assets from the existing account to the new account

	Move all assets from the new account to the existing account

	Discard funds in the existing account and switch to the new account

	Cancel, maintaining the current account

send

actions.send(params: SendData)

Prompt the user to send an asset, redirecting them to the send confirmation page.

Paramaters

TODO

navigateTo

actions.navigateTo(location: string | number, [state?: any])

Navigate the app’s internal router to the path described (react-router is used internally).

Alternatively, pass a number to navigate forward or backwards through the history (pass -1 to
go back).

Example

const MyPage = ({ actions }) => (
 <div>
 <Button onClick={() => actions.navigateTo('/game')}>Game</Button>
 <Button onClick={() => actions.navigateTo('/game', { level: 2 })}>Level 2</Button>
 <Button onClick={() => actions.navigateTo(-1)}>Back</Button>
 </div>
);

setLoading

actions.setLoading(status: string | null)

getHistoryEvents

actions.getHistoryEvents([options?: any]): HistoryEvent[]

onHistoryEvent

actions.onHistoryEvent(callback: HistoryEventCallback)

removeHistoryEventListener

actions.removeHistoryEventListener(callback: HistoryEventCallback)

Burner Components: UI Components

Page

Props

	title: (string) Page title to display at top of page

	children: (React node) Page content

Example

const MyPage = ({ BurnerCompents }) => {
 const { Page } = BurnerComponents;
 return (
 <Page title="My Page">
 Content
 </Page>
);
};

AssetSelector

TODO

AmountInput

TODO

Button

TODO

QRCode

TODO

Burner Components: Data Providers

A number of non-visual components are available. Many of these components simplify the process of
accessing blockchain data using render props.

AccountBalance

Props

	asset: (string or Asset)

	[account]: (string) Account to look up data from. Optional, will use the default account if omitted

	render: (callback)

Callback data

The callback will be called with null while data is loading or unavailable. Once loaded, the
callback will be called with an object with the following properties:

	balance: (string) The account balance, in wei-equivelent units (the balance divided by 10^18)

	displayBalance: (string) The balance in decimal format

	maximumSendableBalance: (string) The maximum that can be sent. For native assets like ETH, this will be the total balance minus the gas fee for a simple transaction

	displayMaximumSendableBalance: (string) maximumSendableBalance in decimal format

	usdBalance: (string | null) If price data is available, it will be the balance multiplied by the balance

Example

TODO

AccountKeys

TODO

AddressName

Retrieves the human-readable name for an address, if available

Props

	address

	render

Callback data

The render method will be called with two arguments:

	name (string or null) The human readable name, if available

	address (string)

Example

TODO

History

Render a list of history events

Props

	account: (string) The Ethereum account to fetch history for

	render: (callback) Render function that will be called once for each history element

Callback data

Example

TODO

PluginButtons

Define a region where other plugins may insert elements

Props

	position: (string) The name of the position

	Component: (React Component) Optional, the component to render each button. If omitted, Button will be used

	Other props will be passed through to inserted buttons

PluginElements

Define a region where other plugins may insert elements

Props

	position: (string) The name of the position

	Other props will be passed through to inserted elements

TransactionDetails

Props

	asset: (string) Asset ID

	txHash: (string) Transaction hash

	render: (callback) Render function

Callback data

The render function will provide a single SendData object with the following properties;

	asset: (string);

	value: (string) The amount transfered, in wei-equivelent units

	ether: (string) The amount transfered, in ether-equivelent units (typically value * (10 ** 18))

	from: (string) The transaction sender

	to: (string) The transaction recipient (note: if this is a token transfer, it will be the transfer recipient, not the transaction recipient)

	message?: (string or null) The transaction message or null

	hash?: (string) Transaction hash

	timestamp: (number) Unix timestamp of the transaction (block time)

Example

TODO

Packages

Main Packages

@burner-wallet/modern-ui

@burner-wallet/ui-core

@burner-wallet/classic-ui

@burner-wallet/types

Core Packages

@burner-wallet/core

@burner-wallet/assets

Standard Plugins

@burner-wallet/ens-plugin

@burner-wallet/erc681-plugin

@burner-wallet/exchange

@burner-wallet/legacy-plugin

@burner-wallet/link-plugin

@burner-wallet/metamask-plugin

@burner-wallet/onboarding-plugin

@burner-wallet/recent-accounts-plugin

@burner-wallet/seed-phrase-plugin

Theming

The Burner Wallet (specifically the ModernUI package) has minimal support for themes, although we
plan allow further customization in the future.

Theme values can be passed to the optional theme prop of ModernUI:

Logo

Passing the URL to an image will display that image as the logo in the wallet header.

Accent Color

The accentColor value will set the color for elements such as buttons.

The values accentLight and accentDark are automatically calculated based on accentColor,
however you may override these values.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Burner Wallet’s documentation!

 		
 Getting started

 		
 Setting Infura key

 		
 Add a custom token

 		
 Local developer wallet

 		
 Wallet Architecture

 		
 Burner Core

 		
 BurnerCore

 		
 Gateways

 		
 Signers

 		
 Assets

 		
 Burner Wallet UI

 		
 UI Core

 		
 UI Implementations (ModernUI)

 		
 Plugins

 		
 Exchange Plugin

 		
 Plugin Development Guide

 		
 What can a Burner Wallet Plugin do?

 		
 Sample Plugins

 		
 Getting Started

 		
 Option 1: Clone the sample project

 		
 Option 2: Start from scratch

 		
 Environment Variables

 		
 Typescript Support

 		
 Create plugin entry point

 		
 Adding a page

 		
 Interacting with a contract

 		
 API Reference

 		
 Plugin Class

 		
 Plugin Context

 		
 addElement

 		
 addPage

 		
 addButton

 		
 getAssets

 		
 getWeb3

 		
 addAddressToNameResolver

 		
 onAccountSearch

 		
 onQRScanned

 		
 onSent

 		
 sendPluginMessage

 		
 onPluginMessage

 		
 Plugin Component Props

 		
 plugin

 		
 assets

 		
 defaultAccount

 		
 accounts

 		
 actions

 		
 BurnerComponents

 		
 React Router props

 		
 Actions

 		
 callSigner

 		
 canCallSigner

 		
 openDefaultQRScanner

 		
 scanQRCode

 		
 safeSetPK

 		
 send

 		
 navigateTo

 		
 setLoading

 		
 getHistoryEvents

 		
 onHistoryEvent

 		
 removeHistoryEventListener

 		
 Burner Components: UI Components

 		
 Page

 		
 AssetSelector

 		
 AmountInput

 		
 Button

 		
 QRCode

 		
 Burner Components: Data Providers

 		
 AccountBalance

 		
 AccountKeys

 		
 AddressName

 		
 History

 		
 PluginButtons

 		
 PluginElements

 		
 TransactionDetails

 		
 Packages

 		
 Main Packages

 		
 @burner-wallet/modern-ui

 		
 @burner-wallet/ui-core

 		
 @burner-wallet/classic-ui

 		
 @burner-wallet/types

 		
 Core Packages

 		
 @burner-wallet/core

 		
 @burner-wallet/assets

 		
 Standard Plugins

 		
 @burner-wallet/ens-plugin

 		
 @burner-wallet/erc681-plugin

 		
 @burner-wallet/exchange

 		
 @burner-wallet/legacy-plugin

 		
 @burner-wallet/link-plugin

 		
 @burner-wallet/metamask-plugin

 		
 @burner-wallet/onboarding-plugin

 		
 @burner-wallet/recent-accounts-plugin

 		
 @burner-wallet/seed-phrase-plugin

 		
 Theming

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

